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1. Introduction

Thliis report summarizes research performed under NASA Contract NSR-05-020-500 in the period

197(0 1)ecember 18 to 1973 April 1. The primary products of this work have already been published

(Appendices A and B). Accomplishments under this contract can best be understood in terms of

antecedent work.

2. Early Work

The idea that colmpluter scientists should study computations themselves rather then just the

notion of complutability (i.e. recursion theory) was suggested in 1963 by McCarthy [1,2). These

early papers suggested that mathematical methods could be used to prove (or disprove) the

followin properties of programs:
I. a program is correct,
2. a program terminates,
.two programs are equivalent,

4. a translation procedure between two languages is correct, (i.e. it preserves the meaning of
a program),

5. optimized programs are equivalent to the original,
6. one program uses less resources than another and is therefore more efficient.

These are simply technical descriptions of a programer's day to day problems. The notion of

correctness of a program is just - how do we know that a particular program solves the problem

that it was intended to. The usual way of putting it is: "Does my program have bugs in. it". A

correclI Iath.'nlmatical description of what this means is a central problem in MTC and is a

genuine first step in any attempt to.mechanize the debugging of programs. The equivalence of

programs is similar in that until there are clear ways of describing what a program does, saying

that they "do" the same thing is impossible. These technical problems are now well enough

Iunde:rstood so that serious attempts to apply the results to "real" programs are beginning.

Atteml:is to formnalize these questions have proceeded along several lines simultaneously. In [4,6)

McCarthy and Mansfield discussed new languages for expressing these notions were considered.

[4] coliisiceied a first order logic which contained an "undefined" truth-value. This was one way

of e.lxplaininiig what was meant by computations which didn't terminate. [5] used a traditional first

order lo,ic to describe a subset of ALGOL.

ll [3] McCarthy proposed that computers themselves might be used to check the correctness of

proo'fs in formal systems, and was the first to actually construct a program to carry this out. This

suggests thlat one could check or possibly look for solutions to the above problems (in the form of

proofs ill some formal system). As a result a series of proof checkers has been built. The first is

re)ported in [7].

In 196CG Floyd [8] published his now well known method of assigning assertions to the paths in a

flowchart, in order to find verification conditions the truth of which guarantee the "correctness" of

the originial program.
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McCarthy, Painter and Kaplan [9,10,11,12.13,14] used the ideas in [4,8) to prove:
1) the correctness of a compiler for arithmetic expressions,
2) Ihe correctness of several tompilers for algol-like programs,
3) the equivalence of some algorithms.

KIaplan also gave some completeness results for a formal system which talks about assignment
statements [10], and discussed the equivalence of programs [13,14]. During this time another proof
checker was written by W. Weiher [15].

In a series of articles Z. Manna extended and expanded Floyd's original ideas. With A. Pneulli
[16,17] he dciscussecd the relationship between the termination, correctness and equivalence of
recursively defined functions and the satisfiability (or unsatisfiability) of certain first order
formulas. In [17] they work out an example using the 91 function. In [18] Manna extended his
ideas to ronr-deterministic programs. E. Ashcroft and he did a similar thing for parallel programs
in [21].

P. Hayes [IS] again attacked the problem of a three-valued predicate logic, this time with a
machine implementation in mind. This coincided with a paper of Manna and McCarthy [19],
which used this logic.

About this time (1969) several important developments occurred which allowed the above
questions to be reexamined from different points of view.

1. In [22] Z. Manna showed how to formulate the notion of partial
correctnless in second logic.

C. A. R. Hoare [24] published a paper describing a new formalism
for expressing the meanings of programs in terms of input/output relations.
,. S. Igarashi [23] gave an axiomatic description of an ALGOL-like
I.e a' e.:I I g .ua ge.

.1. D. Scott suggested using the typed lambda calculus for studying
MTC and first described IN 1970 a mathematical model of Church's lambda
calculus.

These tre,:,trher with McCarthy's axiomatic approach now represent the most important directions
in MITC research. They express different points of view towards the meanings (or semantics) of
progarms. b2
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3. Research Performed under this Contract

By the heg;inning of the contract period (December 1970), Mathematical Theory of Computation

had becuome quite a lively field. Research performed under this contract cannot be cleanly

separated from other concurrent work at Stanford (mainly by Edward Ashcroft, Ashok Chandra,
Robert Floyd, Shigeru lgarashi, and Ralph London), or from work elsewhere. Instead, we simply
summarize recent progress, with a note that the following persons received at least part of their

supFport from the subject contract: Jack Buchanan, John McCarthy, Zohar Manna, Robin Milner,
and Richarrd Weyhrauch.

Manna (following Floyd) describes the effects of a program by showing what kinds of relations

must hold among the values of the program variables at different points in the execution of the

program. III plarticular between the input and the output. In [3l]]Floyd suggests an interactive

system for designing correct programs. These ideas are systematized and expanded by Manna in

[34]. He and Ashcroft show how to remove GOTO statements from programs and replace them

by WHILE statements in [33].

Hoare show,,s how properties (including the meaning).of a. program can be expressed as rules of

inference im his formal system and how these rules can be used to generate the relations described

by Floyd and Manna. This puts their approach in a formal setting suitable for treatment on a

conpluiter. W.ork on this formal system is at present being aggressively pursued. .Igarashi, London,
and ILicrkham have increased the scope of the original rules and have programed a system called

VCG (for verification condition generator) which takes. PASCAL programs together with

assertios assigned to loops in the program and uses the Hoare rules to automatically generate

velification conditions the proof of which guarantee the correctness of the original.program.

.These sentences are then given to a resolution theorem prover[26] which tries to prove 'them.

There is also a project started by Suzuki under the direction of Luckham.to develop.prograris to

take accouint of lparticular properties of arithmetic and arrays when trying to: prove the

verificatio'i conditions. London also produced an informal proof of two lisp 'coMpiler[35]

Igarashi's fornmal system [23] differs from Hoare's in that the rules of inference act directly on the

programs themselves rather than properties of such programs.

Scott's work assumes that the most suitable meaning for a program is the function which it

computes and essentially ignores how that computation proceeds. The other approaches are more

intentiol'nal in that:
1) they may riot necessarily mention that function explicitly although it might appear

implicitly.
2) they can (and do) consider notions of meaning that are stronger than Scott's.

For exampl:le programs might have to have "similar" computation sequences before considering
them equivalent[25].

A computer -program (LCF for "logic for computable functions") has been impleniented by

Milrier[26]. This logic uses the typed lambda calculus to defines the semantics of programs.
Exactly how to do this was worked out by Weyhrauch and Milner[28,29,30]. In conjunction

Newey worked on the axiomatization of arithmetic, finite sets, and lists in the LCF environment.
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This work is still continuing. In addition Milner and Weyhrauch worked with Scott on an

axiomatization of the type free lambda calculus. Much of this work was informally summarized

in [:?2].

IMvcCarthy attempts to give an axiomatic treatment to a programming language by describing its
abstract syntax in first order logic and stating properties of the programming language directly as

axioms. This approach has prompted Weyhrauch to begin the design of a. new first order logic

proof checker based on natural deduction. This proof checker is expected to incorporate the more
interesting features of LCF and will draw heavily on the knowledge gained from using LCF to

attemnlpt to make the new first order proof checker a viable tool for use in proving properties of

This work is all being brought together by projects that are still to a large extent unfinished.
They include

1) a new version of LCF including a facility to search for
proofs automatically.
2) the description of the languarge PASCAL in terms of both
LCF and in first order logic (in the style of McCarthy)
in order to have a realistic comparison between these
approaches and that of Floyd, Hoare, et al.
3) a continuation of Newey's work.
4) the discussion of LISP semantics in LCF and an attempt
to prove the correctness of the London compilers in a
formal way. This is also being done by Newey.
5) the design of both special purpose and domain independent

proving procedures specifically with program correctness
in mind.
6) the design of languages for describing such proof procedures
7) the embedding of these ideas in the new first order checker.

In addition to the work described above, Ashcroft, Manna, and Pneuli[36], and Chandra and
Manna [37] have published results related to program schemas.

Some of these references appeared both as A.I. memos and were later published in journals. In

such cases Iboth references appear in the bibliography.
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3. Shmuel Katz and Zohar Manna, "A Heuristic Approach to Program Verification", Proceedings
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August 1973.

4. Z. Manna (with R. Waldinger), "Toward Automatic Program Synthesis", Comm. ACM,
March 1971.

5. Z. Manna, "Mathematical Theory of Partial Correctness", J. Comp. & Sys. Sci., June 1971.

6. Z. IlManna, S. Ness, and J. Vuillemin, "Inductive Methods for Proving Properties of

Programs", ACM SIGPLAN Notices, Vol. 7, No. 4, January 1972.

7. Z. Manna and J. Vuillemin, "Fixpoint Approach to the Theory of Computation", Comm. ACM,

July 1972.

8. Zohar Manna, "Progr3am Schemas", in Currents in the Theory of Computing (A. V. Aho, Ed.),
Prentice-lall, Englewooci Cliffs, N. J., 1973.

9. Zohar Manna, Stephen Ness, Jean Vuillemin, "Inductive Methods for Proving Properties of

Programs", Comm. ACM, August 1973.

10. Zohar Mannra, "Automatic Programming", Proceedings of the Third International Joint
Conference on Artificial Intelligence, Stanford University, August 1973.

11. Zohar Manna, INTRODUCTION TO MATHEMATICAL THEORY OF
COM PI'TATION, McGraw-Hill, New York, 1974.

12. R. Milner, "An Algebraic Definition of Simulation between Programs", Proc. 2IJCAI, Brit.

Cnimp. Soc., Sept. 1971.
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Logic", Machine Intelligence 7, Edinburgh University Press, 1972.
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Appendix B

ARTIFICIAL INTELLIGENCE MEMOS

Abstracts of research reports published by staff members who were supported by the subject
contract are listed here.

AIM-138, Edward Ashcroft and Zohar Manna, THE TRANSLATION OF 'GO-TO'
PROGRAMS TO 'WHILE' PROGRAMS, January1971, 28 pages.

In this Iapler we show that every flowchart program can be written without 'go-to' statements by
using 'while' statements. The. main idea is to introduce new variables to preserve the values of
certain variables at particular points in the program; or alternatively, to introduce special boolean
variables to keep information about the course. of the cbomputation.

The 'while' programs produced yield the same final results as the originalflowchart program but
need not perform computations in exactly the same way. However, the new programs preserve the
'topology' of the original flowchart program, and are of the same order of efficiency.

We also show that this cannot be done in general without adding variables.

AIM-139, Zohar Manna, MATHEMATICAL THEORY OF PARTIAL CORRECTNESS,
Janiuary 1971, 24 pages.

In this work we show that it is possible to express most properties regularly observed in
algorithms inii terms of 'partial correctness' (i.e., the property that the final results of the algorithm,
if any, satisfy some given input-output relation).

This r esult is of special interest since 'partial correctness' has already been formulated in predicate
calcuhiils and in partial function logic for many classes of algorithms.

AIM-I2, Robin Milner, AN ALGEBRAIC DEFINITION OF SIMULATION BETWEEN
PROGRAMS, February 1971, 21 pages.

A simulation relation between programs is defined which is quasi-ordering. Mutual simulation is
then an equivalence relation, and by dividing out by it we abstract from a program such details
as how the sequencing is controlled and how data is represented. The equivalence classes are
approximations to the algorithms which are realized, or expressed, by their member programs.

A technique is given and illustrated for proving simulation and equivalence of programs; there is
an analcogy with Floyd's technique for proving correctness of programs. Finally, necessary and
sl ficinrl (ondlitions for simulation are given.

10



Final Pepoit Appendix B ARTIFICIAL INTELLIGENCE MEMOS

AIM-1IS, Edward Ashcroft, Zohar Manna, and Amir Pneuli, DECIDABLE PROPERTIES OF

MONADIC FUNCTIONAL SCHEMAS, July 1971, 10 pages.

We define a class of (monadic) functional schemas which properly include 'Ianov' flowchart

schemas. We show that the termination, divergence and freedom problems for functional schemas

are decidable. Although it is possible to translate a large class of non-free functional schemas into

equivalent free functional schemas, we show that this cannot be done ii general. We show also

that the equivalence problem for free functional schemas is decidable. Most of the results are

obtained from, well-known results in Formal Languages and Automata Theory.

AIM-15I4, Zohar Manna, Stephen Ness and Jean Vuillemin, INDUCTIVE METHODS FOR

PROVING PROPERTIES OF PROGRAMS, November 1971, 24 pages.

We have two main purposes in this paper. First, we clarify and extend known results about

computationl of recursive programs, emphasizing the difference between the theoretical and

practical approaches. Secondly, we present and examine various known methods for proving

properties of recursive programs. We discuss in detail two powerful inductive methods,

computatilnal induction and structural induction, illustrating their applications by. various

examples. We also briefly discuss some other related methods.

Our aim in this work is to introduce inductive methods to as wide a class of readers as possible

and to demonstrate their power as practical techniques. We ask the forgiveness of our more

theoreticalni-lded colleagues for our occasional choice of clarity over precision.

AIM -158, Ashok Chandra, Zohar Manna, PROGRAM SCHEMAS WITH EQUALITY,
December 1971, 13 pages.

We discuss the class of program schemas augmented with equality tests, that is, tests of equality
between terins.

In the first part of the paper we illustrate the "power" of equality tests. It turns out that the class

of program schemas with equality is more powerful than the "maximal" classes of schemas

suiggstet-d by other investigators.

In the second part of the paper, we discuss the decision problems of program schemas with

equality. It is shown, for example, that while the decision problems normally considered for

schemnas (such as halting, divergence, equivalence, isomorphism and freedom) are decidable for

lanov schemas. They all become undecidable if general equality tests are added. We suggest,

however, limited equality tests which can be added to certain subclasses of program schemas while

preserving their solvable properties:

AIM-163, J.M. Cadiou, RECURSIVE DEFINITIONS OF PARTIAL FUNCTIONS AND
THEIR COMPUTATIONS, April 1972, 160 pages.

A fornal syntactic and semantic model is presented for 'recursive definitions' which are

genera;liza:iolls :f those found in LISP, for example. Such recursive definitions can have two

classes of fixpoints, the strong fixpoints and the weak fixpoints, and also possess a class of

computed partial functions.
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Relations between these classes are presented: fixpoints are shown to be extensions of computed

functions. More precisely, strong fixpoints are shown to be extensions of computed functions

when the computations may involve "call by name" substitutions; weak fixpoints are shown to be

extensions of computed functions when the computation only involve "call by value'.' substitutions.

The Church-Rosser property for recursive definitions with fixpoints also follows from these

results.

1Then conditions are given on the recursive definitions to ensure that they possess least fixpoints

(of both classes), and computation rules are given for computing these two fixpoints: the "full"

compuitaion rule, which leads to the least weak fixpoint. A general class of computation rules,

called 'safe inner'most', also lead to the latter fix.poini. The "leftmost innermost" rule is a special

case of those, for the LISP recursive definitions.

AIM-161, Zohar Manna and Jean Vuillemin, FIXPOINT APPROACH TO THE THEORY OF

COM PUTATION, April 1972, 29 pages.

Following the fixpoint theory of Scott, we propose to define the semantics of computer programs
in terms uf the least fixpoints of recursive programs. This allows one not only to justify all

existiing verification techniques, but also to extend them to handle various properties of computer

programs, including correctness, termination and equivalence, in a uniform manner.

AIM-169, Robin Milner, LOGIC FOR COMPUTABLE FUNCTIONS. DESCRIPTION OF A
MACHINE IMPLEMENTATION, May 1972, 36 pages.

This :,paper is primarily a user's manual for LCF, a proof-checking program for a logic of

computable functions proposed by Dana Scott in 1969, but unpublished by him. We use the name

LCF also for the logic itself, which is presented at the start of the paper. The proof-checking

P:rogram is designed to allow the user interactively to generate formal proofs about computable
functiolts and functionals over a variety of domains, including.those of. interest to the computer

scientist--for example, integers, lists and computer programs and their semantics. The user's task is

allev:iated I.,y two features: a subgoaling facility and a powerful simplification mechanism.

Applications include proofs of program correctness and in particular of compiler correctness; these

-applications are not discussed herein, but are illustrated in the papers referenced in the

inltroductiolln.

AIM-184, Malcolm Newey, AXIOMS AND THEOREMS FOR INTEGERS, LISTS AND
FINITE SETS IN LCF, January 1973, 53 pages.

LCF (Logic for Computable Functions) is being promoted as a formal language suitable for the

discussion of various problems in the Mathematical Theory of Computation (MTC). To this end,
several examples of MTC problems have been formalised and proofs have been exhibited using

the LCF proof-checker. However, in these examples, there has been a certain amount of ad-hoc-

ery in the pIroofs; namely mnany mathematical theorems have been assumed without proof and no
axio,atisarin of the mathematical domains involved was given. This paper describes a suitable
ma ahematical environment for future LCF experiments and its axiomatic basis. The environment
developed deerned appropriate for such experiments, consists of a large body of theorems from the

areas of integer arithmetic, list manipulation and finite set theory.
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AIM-ISri, Ashiok IK.Charldra and Zohar Manna, ON THE POWER OF PROGRAMMING

FEATUR ES, January 1973, 29 pages.

We consider the power of several programming features such as counters, pushdown stacks,

es. arrays, recursion and equality. In this study program schemas are used as the model for

compuitation. The relations between the powers of these features is completely described by a

comparlisoll diagr,1111.

AINI-186. RoIbin Milner, MODELS OF LCF, January 1973, 17 pages.

LCF is a deductive system for computable functions proposed by D. Scott in 1969 in an

unpullis ld .mIemor;:' AIdum. The ipurpose of the present paper is to demonstrate the soundness of

the system with reslect to certain ~models, which are partially ordered domains of continuous

functiclns. This demonstration was supplied by Scott in his memorandum; the present paper is

merely iiitenrdcd to make this work more accessible.

AIM-210, Zol ar Manna and Amir Pnueli, AXIOMATIC APPROACH TO TOTAL

CORRECTNESS OF PROGRAMS, July 1973, 25 pp.

\Ve lprese it h'ere aIn axiomatic appll oach which enables one to prove by formal methods that his

porn s " ota lly correct" (i.e., it terminlt t andl is logically correct -- does what it is supposed to

do). The ail,rioach is similar to Hoare's approach for proving that a program is "partially

correct" (i.e., lIat whenev.er it terminates it produces correct results). Our extension to Hoare's

mrethod lies iIn the possibility of proving correctness and termination at once, and in the enlarged

scope of lproperties that can be proved by it.
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